Encuentran molécula en Titán que podría sustentar una forma de vida

El Ciudadano \cdot 28 de julio de 2017

El descubrimiento se hizo con datos del observatorio ALMA, en el norte de Chile. Las moléculas de acrilonitrilo podrían ser la base de la formación de membranas celulares en la luna de Saturno.

Titán, la mayor luna de Saturno. Imagen: University of Arzona/University of Idaho

Un equipo internacional de científicos planetarios ha detectado acrilonitrilo en la atmósfera de Titán, la luna más grande de Saturno. Estas son noticias interesantes, porque si ha de haber vida en Titán, es esta molécula la que la que jugaría un rol importante en ello. Además, el descubrimiento se hizo con datos del observatorio Atacama Large Millimeter/submillimeter Array (ALMA), en el norte de Chile.

La investigación, publicada en la revista *Science Advances* y liderada por en Centro de Vuelo Espacial Goddard de la NASA, estima que hay alrededor de 1.000 billones de moléculas en cada centímetro cúbico de la atmósfera. Aunque la cifra parezca extremadamente grande, corresponde a cerca de un millonésimo por ciento de la composición atmosférica de la luna. Pero si las condiciones son correctas, incluso este ínfimo porcentaje podría tener un efecto importante.

Con una temperatura de alrededor de 180°C bajo cero y una atmósfera densa en nitrógeno, Titán no es un mundo acogedor para la vida como la conocemos, pero a pesar de esto,los investigadores han estado pensando qué tipos de formas de vida simples podrían existir en la luna saturnina. En este contexto, el acrilonitrilo se sugiere como una buena molécula para sustentar membranas como las celulares.

En la Tierra las membranas celulares están hechas de moléculas llamadas lípidos, pero estas no podrían formarse en un mundo estéril como el de Titán. En cambio el acrilonitrilo sí podría ser la base de la formación de membranas.

Esto era solo teoría, hasta que se observaron pistas de las moléculas desde la sonda Cassini, lo que gatilló la curiosidad de los científicos. Luego, las simulaciones mostraron que el acrilonitrilo pude

formar membranas estables en la réplica de un ambiente como el de la luna de Saturno.

Los investigadores usaron ALMA para estudiar la atmósfera de Titán, donde se colectaron observaciones

desde febrero hasta mayo de 2014. Con esa información pudieron confirmar la presencia de acrilonitrilo.

Las moléculas se halaron mayormente a más de 200 kilómetros, lo que concuerda con el modelo

esperado de la atmósfera de Titán.

Si las moléculas descienden a la luna es probable que terminen en alguno de sus muchos lagos y mares

de metano. El equipo estima que si las membranas celulares se llegan a formar, habría 10 millones por

cada centímetro cúbico en el mar de Ligeia; el segundo mayor cuerpo líquido de la luna saturnina. Para

tener una idea comparativa, hay cerca de 1 millón de bacterias por centímetro cúbico en las costas

oceánicas de la Tierra.

Titán es el único lugar aparte de nuestro planeta, en el Sistema Solar, donde se ha encontrado cuerpos

estables de superficie líquida. Esta investigación podría ayudar a impulsar muchos estudios sobre cómo

la vida podría formarse, vivir y prosperar a partir de la membrana de acrilonitrilol. También podría

ayudarnos a entender la intrincada conexión entre la superficie y la atmósfera de la luna o a precisar las

posibilidades de vida.

Vía IFLScience

El Ciudadano

Fuente: El Ciudadano