Usan arañas muertas como piezas robóticas

El Ciudadano · 6 de agosto de 2022

Científicos utilizan las patas de arañas muertas para manipular objetos. La 'necrobótica' es un campo experimental que emplea partes biológicas sin vida

La naturaleza ha inspirado el diseño de robots parecidos a animales, como las máquinas cuadrúpedas que pueden correr como grandes felinos o aparatos acuáticos que nadan como medusas. Los robots biohíbridos van un paso más allá al incorporar materiales vivos directamente en sistemas de ingeniería. La bioinspiración y la biohibridación han dado lugar a nuevas investigaciones, pero los humanos han dependido de materiales bióticos (materiales no vivos derivados de organismos vivos) desde que sus primeros antepasados usaban pieles de animales como ropa y huesos como herramientas.

En electromecánica, los llamados actuadores eléctricos son instrumentos que permiten accionar a distancia cualquier dispositivo para realizar una acción o movimiento, basta con estar conectados a una fuente de energía. Ahora, la investigadora Faye Yap, de la Universidad de Rice (EEUU), ideó la manera de reutilizar las patas de arañas fallecidas como actuadores de pinzas mecánicas. Estas podrían introducirse en contextos naturales para recoger objetos, como otros insectos, que pesan más que ellas.

En este trabajo inicia el área de la «necrobótica» en la que los materiales bióticos se utilizan como

componentes robóticos.

¿Cómo funciona?

A diferencia de las personas y otros mamíferos que mueven sus extremidades sincronizando músculos

opuestos, las arañas usan la hidráulica. Una cámara cerca de sus cabezas se contrae para enviar sangre a las extremidades, obligándolas a extenderse. Cuando se alivia la presión, las piernas se

contraen.

Para el procedimiento, Yap y su colega Daniel Preston, sacrificaron una araña mediante la aplicación

de bajas temperaturas. Con la ayuda de un microscopio electrónico de barrido, se ubicó la articulación que

controla la unión de las patas de la araña (femororrotuliana), se insertó una aguja hipodérmica y se

selló con pegamento. Al secar, se conectó una jeringa (o cualquier fuente de presión adecuada) a la aguja,

completando la fabricación de la pinza necrobótica. Basta con ejercer o liberar presión para

usarla.

La necrobótica se puede ampliar aún más al incorporar materiales bióticos derivados de otras

criaturas con mecanismos hidráulicos similares para la locomoción y la articulación.

¿Qué utilidades puede tener?

La pinza necrobótica es capaz de agarrar objetos con geometrías irregulares y con un peso de hasta

130% de su propia masa.

En realidad, los investigadores admiten que al momento se les han ocurrido muy pocas aplicaciones para

este ejemplo de necrobótica.

Preston afirma que se puede encontrar entre tantas actividades de laboratorio que consisten en recoger y

colocar pequeños objetos, tareas repetitivas como clasificar o mover objetos a estas escalas

pequeñas, como el ensamblaje de microelectrónica.

Otra aplicación propuesta por Yap podría ser implementarlo para capturar insectos más pequeños en la

naturaleza, como un dispositivo manual, porque está camuflado de forma inherente.

El laboratorio sometió a la araña a 1,000 ciclos de apertura y cierre para ver qué tan bien

sostenían sus extremidades y se descubrió que era bastante robusta. A partir de los 1,000 ciclos

empezó a mostrar problemas de desgaste, que pueden deberse a la deshidratación, lo cual se podría superar

aplicando recubrimientos poliméricos.

Los resultados de la investigación fueron publicados con el título "Necrobótica: materiales bióticos

como actuadores listos para usar" en la revista de revisión por pares Advanced Science el 25 de julio

de 2022.

https://onlinelibrary.wiley.com/doi/10.1002/advs.202201174

Ilustración: Iván Castillo

Recuerda suscribirte a nuestro boletín

→ bit.ly/2T7KNTl

📰 elciudadano.com

Fuente: El Ciudadano